Skip to main content
Log in

Change detection of wetland ecosystems using Landsat imagery and change vector analysis

  • Published:
Wetlands Aims and scope Submit manuscript

Abstract

Accurate, efficient, and repeatable mapping of changes in wetlands and riparian areas (referred to collectively as wetlands) is critical for monitoring human, climatic, and other effects on these important systems. We used Landsat-based satellite imagery from 1988 and 2001 to map changes in wetland ecosystems in the Gallatin Valley of southwest Montana. Stochastic gradient boosting (SGB) was used to classify the 2001 image, and change vector analysis (CVA) was used to identify locations where wetland areas might have changed between 1988 and 2001. These potentially changed locations again were classified for the 1988 Landsat image using SGB. Areas of change constituted 3.4% of the study area, thus only this small percentage of the image was reclassified for the 1988 image. Overall change detection accuracy was 76%, although changes along the periphery of wetland boundaries and in areas of smaller upland inclusions were not distinguished as well as other changes. Overall accuracies of the SGB wetland classification maps were 81% for 1988 and 86% for 2001. CVA significantly reduced the number of pixels involved in the historical image classification compared to conducting independent classifications, thus reducing the potential for compounding classification errors in unchanged areas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature Cited

  • Allen, T. R. and J. A. Kupfer. 2000. Application of spherical statistics to change vector analysis of Landsat data: Southern Appalachian spruce-fir forests. Remote Sensing of Environment 74: 482–93.

    Article  Google Scholar 

  • Armenakis, O., F. Leduc, I. Cyr, F. Savopol, and F. Cavayas. 2003. A comparative analysis of scanned maps and imagery for mapping applications. ISPRS Journal of Photogrammetry and Remote Sensing 57: 304–14.

    Article  Google Scholar 

  • Baker, C., R. Lawrence, C. Montagne, and D. Patten. 2006. Mapping wetlands and riparian areas using Landsat ETM+ imagery and decision-tree-based models. Wetlands 26: 465–74.

    Article  Google Scholar 

  • Bolstad, P. V. and T. M. Lillesand. 1992. Rule-based classification models: flexible integration of satellite imagery and thematic spatial data. Photogrammetric Engineering and Remote Sensing 58: 965–71.

    Google Scholar 

  • Brown, P. H. and C. L. Lant. 1999. The effect of wetland mitigation banking on the achievement of no-net-loss. Environmental Management 23: 333–45.

    Article  PubMed  Google Scholar 

  • Census Economic Information Center. 2004. Census of Agriculture — county data — Montana. http://ceic.commerce.state,mt.us. Last accessed 15 May 2004.

  • Chander, G. and B. Markham. 2003. Revised Landsat 5TM radiometric calibration procedures and post-calibration dynamic ranges. http://landsat7.usgs.gov/documents/L5TMCal2003.pdf

  • Choung, S. H. and J. J. Ulliman. 1992. A comparative study of wetland change detection techniques using post-classification comparison and image differencing on Landsat-5 TM data. Journal of Korean Forestry Society 81: 346–56.

    Google Scholar 

  • Civco, D. L. 1989. Knowledge-based land use and land cover mapping. Technical Papers. 1989 Annual Meeting of the American Society for Photogrammetry and Remote Sensing, Baltimore, MD, p. 276–91.

  • Civco, D. L., J. D. Hurd, E. H. Wilson, M. Song, and Z. Zhang. 2002. A comparison of land use and land cover change detection methods. American Congress on Surveying & Mapping — American Society for Photogrammetry and Remote Sensing 2002 Annual Conference Proceedings.

  • Collins, J. B. and C. E. Woodcock. 1994. Change detection using the Gramm-Schmidt transformation applied to mapping forest mortality. Remote Sensing of Environment 50: 267–79.

    Article  Google Scholar 

  • Coppin, P., I. Jonckheere, K. Nackaerts, B. Muys, and E. Lambin. 2004. Digital change detection methods in ecosystem monitoring; a review. International Journal of Remote Sensing 25: 1565–96.

    Article  Google Scholar 

  • Crist, E. P. and R. C. Cicone. 1984. A physically-based transformation of Thematic Mapper data — The TM Tasseled Cap. IEEE Transactions on Geoscience and Remote Sensing 22: 256–63.

    Article  Google Scholar 

  • Crist, E. P., R. Laurin, and R. C. Cicone. 1986. Vegetation and soils information contained in transformed Thematic Mapper data. Proceedings of the IGARSS 1986 Symposium, Zurich Switzerland (p. 1465–70). Paris, France.

  • Dymond, C. C., D. J. Mladenoff, and V. C. Radeloff. 2002. Phenological differences in Tasseled Cap indices improve deciduous forest classification. Remote Sensing of Environment 80: 460–72.

    Article  Google Scholar 

  • Ehrenfeld, J. G. 2000. Evaluating wetlands within an urban context. Ecological Engineering 15: 253–65.

    Article  Google Scholar 

  • Ghermay, L., H. S. Rochon, B. West, and S. Abdullah. 2000. Utilizing archival remotely sensed data in support of wetland resource management. IGARSS 2000: 2000 International Geoscience and Remote Sensing Symposium, p. 1921–24.

  • Hame, T., I. Heiler, and J. S. Miguel-Ayanz. 1998. An unsupervised change detection and recognition system for forestry. International Journal of Remote Sensing 19: 1079–99.

    Article  Google Scholar 

  • Harvey, K. R. and G. J. E. Hill. 2001. Vegetation mapping of a tropical freshwater swamp in the Northern Territory, Australia: a comparison of aerial photography, Landsat TM and SPOT satellite imagery. International Journal of Remote Sensing 22: 2911–25.

    Article  Google Scholar 

  • Hayes, D. J. and S. A. Sader. 2001. Comparison of change-detection techniques for monitoring tropical forest clearing and vegetation regrowth in a time series. Photogrammetric Engineering and Remote Sensing 67: 1067–75.

    Google Scholar 

  • Hewitt, M. J. 1990. Synoptic inventory of riparian ecoystems: The utility of Landsat Thematic Mapper data. Forest Ecology and Management 33/34: 605–20.

    Article  Google Scholar 

  • Hosking, E. J., C. S. Bach, R. J. Applegate, R. A. Karfs, and J. F. Wallace. 2001. Mangrove monitoring using sequences of Landsat imagery in the Mary River wetlands. IGARSS 2001; 2001 IEEE International Geoscience and Remote Sensing Symposium, p. 2241–43.

  • Houhoulis, P. F. and W. K. Michener. 2000. Detecting wetland change: a rule-based approach using NWI and SPOT-XS data. Photogrammetric Engineering and Remote Sensing 66: 205–11.

    Google Scholar 

  • Huang, C., B. Wylie, L. Yang, C. Homer, and G. Zylstra. 2002a. Derivation of a Tasseled Cap transformation based on Landsat and at-satellite reflectance. International Journal of Remote Sensing 23: 1741–48.

    Article  Google Scholar 

  • Huang, C, L. Yang, C. Homer, B. Wylie, J. Vogelman, and T. DeFelice. 2001. At-satellite reflectance: a first order normalization of Landsat and ETM+ images. USGS White Papers. http://landcover.usgs.gov/pdf/huang2.pdf.

  • Huang, C, Z. Zhang, L. Yang, B. Wylie, and C. Homer, C. 2002b. MRLC 2000 image preprocessing procedure, USGS White Paper. http://landcover.usgs.gov/pdf/image_preprocessing.pdf

  • Jano, A. P., R. L. Jeffries, and R. F. Rockwell. 1998. The detection of vegetational change by multitemporal analyis of Landsat data: the effects of goose foraging. Journal of Ecology 86: 93–99.

    Article  Google Scholar 

  • Jensen, J. R. 1996. Introductory Digital Image Processing, third edition. Prentice Hall, Upper Saddle River, NJ, USA.

    Google Scholar 

  • Johnson, R. D. and E. S. Kasischke. 1998. Change vector analysis: a technique for the multispectral monitoring of landcover and condition. International Journal of Remote Sensing 19: 411–26.

    Article  Google Scholar 

  • Kendy, E. 2001. Ground-water resources of the Gallatin Local Water Quality District, southwestern Montana. U.S. Geologic Survey: Fact Sheet 007-01.

  • Kindscher, K., A. Fraser, M. E. Jakubauskas, and D. M. Debinski. 1998. Identifying wetland meadows in Grand Teton National Park using remote sensing and average wetland values. Wetlands Ecology and Management 5: 265–73.

    Article  Google Scholar 

  • Lawrence, R., A. Bunn, S. Powell, and M. Zambon. 2004. Classification of remotely sensed imagery using stochastic gradient boosting as a refinement of classification tree analysis. Remote Sensing of Environment 90: 331–36.

    Article  Google Scholar 

  • Lawrence, R. L. and A. Wright. 2001. Rule-based classification systems using classification and regression tree (CART) analysis. Photogrammetric Engineering and Remote Sensing 67: 1137–42.

    Google Scholar 

  • Lu, D., P. Mausel, E. Brondizio, and E. Moran. 2003. Change detection techniques. International Journal of Remote Sensing 25: 2365–2407.

    Article  Google Scholar 

  • Malila, W. A. 1980. Change vector analysis: an approach to detecting forest change with Landsat. Proceedings of the 6th International Symposium on Machine Processing of Remotely Sensed Data. Purdue University, West LaFayette, IN, USA, (West LaFayette, IN: Purdue University), p. 326–35.

    Google Scholar 

  • Mas, J. F. 1999. Monitoring land-cover changes: a comparison of change detection techniques. International Journal of Remote Sensing 20: 139–52.

    Article  Google Scholar 

  • Masek, J. G., M. Honzak, S. N. Goward, P. Liu, and E. Pak. 2001. Landsat-7 ETM+ as an observatory for land cover: initial radiometric and geometric comparisons with Landsat-5 Thematic Mapper. Remote Sensing of Environment 78: 118–30.

    Article  Google Scholar 

  • Mitsch, W. J. and J. G. Gosselink. 2000. The value of wetlands: importance of scale and landscape setting. Ecological Economics 35: 25–33.

    Article  Google Scholar 

  • Munyati, C. 2000. Wetland change detection on the Kafue Flats, Zambia, by classification of a multitemporal remote sensing image dataset. International Journal of Remote Sensing 21: 1787–1806.

    Article  Google Scholar 

  • Narumalani, S., Y. Zhou, and J. R. Jensen. 1997. Application of remote sensing and geographic information systems to the delineation and analysis of buffer zones. Aquatic Botany 58: 393–409.

    Article  Google Scholar 

  • Nielsen, A. A., K. Conradsen, and J. J. Simpson. 1998. Multivariate alteration detection (MAD) and MAF postprocessing in multispectral, bitemporal image data: new approaches to change detection studies. Remote Sensing of Environment 64: 1–19.

    Article  Google Scholar 

  • Oetter, D. R., W. B. Cohen, M. Berterretche, T. K. Maiersperger, and R. E. Kennedy. 2001. Land cover mapping in an agricultural setting using multiseasonal Thematic Mapper data. Remote Sensing of Environment 76: 139–55.

    Article  Google Scholar 

  • Parmenter, A. W., A. Hansen, R. Kennedy, W. Cohen, U. Langner, R. Lawrence, B. Maxwell, A. Gallant, and R. Aspinall. 2003. Land use and land cover change in the Greater Yellowstone Ecosystem: 1975–1995. Ecological Applications 13: 687–703.

    Article  Google Scholar 

  • Ramsey, E. W. 1995. Wetlands, global climate change, and remote sensing. Elements of Change: Aspen Global Change Institute. http://www.agci.org/publications/eoc95/session1/Ramsey.html

  • Ramsey, E. W. and S. C. Laine. 1997. Comparison of Landsat Thematic Mapper and high resolution aerial photography to identify change in complex coastal wetlands. Journal of Coastal Research 13: 281–92.

    Google Scholar 

  • Ramsey, E. W., G. A. Nelson, and S. K. Sapkota. 2001. Coastal Change Analysis Program implemented in Louisiana. Journal of Coastal Research 17: 53–71.

    Google Scholar 

  • Ramsey, E. W., A. Rangoonwala, G. Nelson, and R. Ehrlich. 2005. Mapping the invasive species, Chinese tallow, with EO1 satellite Hyperion hyperspectral image data and relating tallow occurrences to a classified Landsat Thematic Mapper land cover map. International Journal of Remote Sensing 26: 1637–57.

    Article  Google Scholar 

  • Ringrose, S., A. Jellema, P. Huntsman-Mapila, L. Barker, and K. Brubaker. 2005. Use of remotely sensed data in the analysis of soil-vegetation changes along a drying gradient peripheral to the Okavango Delta, Botswana. International Journal of Remote Sensing 26: 4293–4319.

    Article  Google Scholar 

  • Sader, S. A., D. Ahl, and W. S. Liou. 1995. Accuracy of Landsat-TM and GIS rule-based methods for forest wetland classification in Maine. Remote Sensing of Environment 53: 133–44.

    Article  Google Scholar 

  • Stefanov, W. L., M. S. Ramsey, and P. R. Christensen. 2001. Monitoring urban land cover change: an expert system approach to land cover classification of semiarid to arid urban centers. Remote Sensing of Environment 77: 173–85.

    Article  Google Scholar 

  • Syphard, A. D. and M. W. Garcia. 2001. Human and beaver induced wetland changes in the Chickahominy River watershed from 1953 to 1994. Wetlands 21: 342–53.

    Article  Google Scholar 

  • Tiner, R. W. 1999. Using plants as indicators of wetlands. Proceedings of the Academy of Natural Sciences of Philadelphia 144: 240–53.

    Google Scholar 

  • Townsend, P. A. and S. J. Walsh. 2001. Remote sensing of forested wetlands: application of multitemporal and multispectral satellite imagery to determine plant community composition and structure in southeastern USA. Plant Ecology 157: 129–49.

    Article  Google Scholar 

  • Toyra, J., A. Pietroniro, L. W. Martz, and T. D. Prowse. 2002. A multisensor approach to wetland flood monitoring. Hydrological Processes 16: 1569–81.

    Article  Google Scholar 

  • Wang, L., J. Lyons, and P. Kanehl. 2001. Impacts of urbanization on stream habitat and fish across multiple spatial scales. Environmental Management 28: 255–66.

    Article  CAS  PubMed  Google Scholar 

  • Warner, T. 2005. Hyperspherical direction cosine change vector analysis. International Journal of Remote Sensing 26: 1201–15.

    Article  Google Scholar 

  • Whigham, D. F. 1999. Ecological issues related to wetland preservation, restoration, creation and assessment. The Science of the Total Environment 240: 31–40.

    Article  CAS  Google Scholar 

  • Willard, D. E. 1935. Montana: The Geological Story. The Science Press Printing Company, Lancaster, PA, USA.

    Google Scholar 

  • Winter, T. C., D. O. Rosenberry, D. C. Buso, and D. A. Merk. 2001. Water source to four U.S. wetlands: implications for wetland management. Wetlands 21: 462–73.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baker, C., Lawrence, R.L., Montagne, C. et al. Change detection of wetland ecosystems using Landsat imagery and change vector analysis. Wetlands 27, 610–619 (2007). https://doi.org/10.1672/0277-5212(2007)27[610:CDOWEU]2.0.CO;2

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1672/0277-5212(2007)27[610:CDOWEU]2.0.CO;2

Key Words

Navigation